Design Foundations¶
In any project, the philosophy and design concepts have a significant impact on its vision and purpose, extending beyond basic functionality. Incorporating design principles into the project can result in a solution that not only fulfills technical requirements but also resonates with users on an aesthetic level.
Design philosophy¶
- 📖 Open Source and Comprehensive Documentation: Adopting an open-source philosophy invites wide-ranging engagement, making the project versatile and adaptable. Community involvement fosters innovation and knowledge exchange, creating a supportive ecosystem. Clear documentation promotes learning, collaboration, and seamless integration with other projects.
- 💎 Aesthetic Appeal and Usability: A technical product's aesthetic appeal should be a byproduct of its superior functionality, technological advancement, and usability.
- 💰 Cost-Effectiveness and Accessibility: Balancing cost and functionality while prioritizing accessibility ensures the project's seamless integration across various sectors.
- 🚀 Future-Proofing: Incorporating foresight for future improvements while maintaining the core design's integrity streamlines the development of new products. Proactively addressing and accommodating future requirements ensures the project's enduring viability and relevance.
Design concepts¶
- 💪High Performance: The system should be capable of processing feedback data in real-time and react immediately by controlling the motor based on predefined algorithms. This simplifies the control process and reduces the load on the control device.
- 💻 Compatibility and Versatility: A wide range of supported interfaces should enable interaction with existing protocols as well as the implementation of new ones. This expands compatibility and facilitates integration of the device into existing systems.
- 🛡️ Precision and Fault Tolerance: The implementation of feedback control with position and current sensors should ensure precise positioning and mechanical load monitoring. This enables the detection and prevention of abnormal system operation when necessary.
- 🔧 Adaptability: Evaluating motor operating parameters and system displacement data enables the selection of an optimal motor control profile for the specified task.
- ⚡️ Reliability and Power Efficiency: Providing protection against electrostatic discharge (ESD), short circuits, and reverse polarity, as well as preventing overheating through reduced thermal losses, improved heat dissipation, and enhanced energy efficiency.
- 🧩 Customizability and Modularity: The device should accommodate functionality expansion or reduction without necessitating design changes.
- 🏭 Optimized for Design for Manufacturing (DFM): Complying with manufacturing technology requirements enhances manufacturability while reducing production costs and complexities.
- ⏳ Longevity Considerations: When choosing project component composition, future availability and support forecasts should be considered.